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Small-scale error can arise in finite-element tidal models from different aspects of the 
spatial discretization. One source is incompatibility in smoothness of interpolation of the 
pressure and velocity fields. Noise of this type can be eliminated completely by using 
Stokes/Helmholtz potentials to represent the velocity. and interpolating these potentials with 
the same smoothness as is given to the pressure. Another source is inhomogeneous 
triangulation, in which the number of links is not the same at all nodes. Noise of this type can 
be suppressed by using a high-resolution grid (the resolution in question being that of the 
response rather than of the domain). These points are illustrated by examining the response 
characteristics of idealized models. It is found that in the models considered, small-scale noise 
can be ascribed to resonance anomalies associated with the method of spatial discretization. 
In this analysis the time is continuous, but some remarks are appended on the effect of time 
discretization, and a formal proof is given of the time-stepping stability of a general, 
discretized form of Laplace’s tidal equations. 

1. INTRODUCTION 

The use of finite elements for modelling oceanic tidal phenomena is providing a 
growing base of experience in the design of such models. The merits of various 
procedures were examined recently by Gray and Lynch (1977, 1978) and Lynch and 
Gray (1979). The present note is prompted by their work and extends some remarks 
of my own (Platzman, 1978, Appendix A; see also Luskin, 1979). 

L.ynch and Gray observe that a common defect of finite-element tidal models is the 
generation of small-scale error, typically with a wave length near the smallest 
resolvable by the grid (sometimes called “26.x noise”). I intend here to examine two 
sources of such noise, one arising from the method of discretizing the velocity field, 
the other from the grid triangulation. The former occurs in both one- and two- 
dimensional models and can be eliminated in a simple way. The latter is inherently 
two dimensional and can be diminished by increasing the spatial resolution of the 
response or by changing the triangulation. The two models used below to illustrate 
these suggestions are not realistic tidal models in the strict sense because they do not 
include frictional or Coriolis forces and are limited to longitudinal oscillations on a 
shelf of uniform depth. Nevertheless, they suffice for the purpose intended, namely, to 
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examine some response characteristics implicit in standard finite-element methods oF 
discretizing Laplace’s tidal equations. 

The usual procedure for solving finite-element equations is by direct numerical 
calculation through matrix inversion. It is well known; however, that grid 
triangulations with a high degree of symmetry can lead in some cases to finite-. 
element equations that are equivalent to simple finite-difference equations. This study 
is limited to such cases, and moreover, the models will be simplified to an extent tInat 
permits straightforward analytic solutions to be found for the difference equations 
encountered. It is from such solutions that the response of the model is calculated. 
This procedure has the merit of providing a clear view of the mathemati~l structure of 
the response. 

To simplify the task of finding analytic solutions I discretize the continiaam 
equations only- in the spatial independent variables. The justification for retaining the 
time as a continuum variable is not merely prudential: by doing so we can isolate the 
effects of spatial discretization and thus more readil!; compare the responses ot 
different models. However, if the time is idscretized, it is a simple matter to modify 
the solutions in the particular cases considered, and I indicate at the end. how this cam 
be done. 

2. FREE OSCILLATIONS IN A ONE-DIMENSIONAL MODEL 

For preliminary illustration consider one-dimensional longitudinal free oscillations 
in a closed channel of length L and depth h, governed by the linearized. hydrostatic 
equations 

;flJat = -&/i,x, @ial , 

&/6t = -gh r!?&3x. (2~ lb) 

Here 5 is elevation of the free surface above mean level and u the x-component of 
volume transport (depth times velocity). Weighted-residual forms of (2.1) are 

Jo Jc 

where cii and /?j are sets of weight functions for the mass and momentum equations, 
respectively. The right-hand side of (2.2a) implies partial integration of the right-hand 
side of (2.la) and omission of the boundary term a’u because in this first model we 
want u = 0 at both ends of the channel. 

In finite-element methods the weight functions are localized. I assume, further. that 
each (ri is continuous and is the discrete analogue of a delta function, and accordingly 
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that in the limit of zero discretization (2.2a) converges to (2.la). For the @ of (2.2b) 
I consider two general alternatives: (i) the pj are like the ai and in the limit of zero 
discretization cause (2.2b) to converge to (2.lb); or (ii) each p’ is the x-derivative of 
a discrete delta function and in the limit of zero discretization causes (2.2b) to 
converge to the x-derivative of (2.lb). (In the latter case the ,L? are not necessarily 
continuous.) To have a convenient terminology I will refer to finite-element models of 
these two types as “primitive” and “derivative” models, respectively. 

A rudimentary example of a primitive model is the standard finite-element 
procedure (for example, see Connor and Brebbia, 1976, Chap. 7) in which 5 and u 
are discretized on the same grid of nodes and are represented by the same set of basis 
functions. In this procedure, moreover, the basis functions are adopted as weight 
functions (Galerkin’s method). Thus, let x = idx (i = 0, 1,2,..., n) be the locations of 
equally-spaced nodes and take pi = ai to be piecewise-linear bases and weights. Then 
for uniform depth the difference equations that arise from (2.2) at internal points are 

(a/&)( 1 + 2$) r/3 = -&/6X, 

(a/&)( 1 + 2p2) u/3 = -c2,usysx, 

where ,u and 6 are central smoothing and first-difference operators 

(2.3a) 

(2.3b) 

/g-(x) = f [j-(x + $3x) +j-(x - &>], 

Sf(x) 3f(X + gx) -f(x - +6x), 
(2.4) 

and c s (gh)1’2 is the speed of propagation of long gravity waves. 
At the end points, where the channel is closed, rigid-boundary coastal conditions 

u,=o; (2.5a) 

u, = 0 (2.5b) 

are imposed as essential boundary conditions and take the place of (2.2b). However, 
[ is not constrained at the end points so (2.2a) must be applied there. It is convenient 
to state the result in the same form (2.3a) as used for internal points, and this can be 
done provided we make use of external nodes i = -1 and i = n + 1 such that 

L 1 = c-1; u -1 =-U1, (2.6a) 

5 n+1= L-1; U,,I = -u,-1. (2.6b) 

These reflection conditions are appropriate only for a rigid boundary. 
Equations (2.3)-(2.6) are linear difference equations with constant coefficients. 

They have the oscillatory solutions 

[ = A cos kx cos ot, 

u/c = A sin kx sin ot, 
(2.7a) 

d/c = (3 sin kd)/(2 + cos kd), (2.7b) 
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where d E Sx and k is a wave number for which sin kL = 0: 

k = (1, 2, 3,..., n - 1) E/L. (,z3) 

In addition there are two steady solutions, which can be obtained from (2.7) by 
setting k = 0 and k = nn/L = r/d. In both of these ti = 0 identically, while < = A 
(uniform surface elevation) in the former and < = (- 1 )‘A (,stationary wave of length 
2d) in the latter. It should be understood that (2.7a) gives the values of 5, zi only at 
the nodes x = (0, 1, 2 ,..., 12) d of the grid. Between the nodes the finite-elemenr model 
calls for i, u to be interpolated linearly rather than trigonometrically. It is apparent 
that (2.7) converges to the normal modes of the continuum equations (2.1) in the 
limit d -+ 0, since (2.7b) makes o -+ kc in that limit. 

In Fig. 1 curve P (signifying a primitive model) is a graph of the frequency 
equation (2.7b). If kd 4 1 (a well-resolved mode), the right-hand side of (2.7b) = 
kd f O(kd)’ So o = kc[l + O(kd)4]. Thus (2.7b) gives a very good account of the 
well-resolved modes. However, the remarkable feature of curve P is that it reaches a 
maximum frequency (3”’ on the ordinate scale) and then declines to zero at the 
maximum wave number k = n/d. The “folding” wave number is 2n/3d. Its presence 
causes the frequency of every mode with wave length less than 36 to be aliased into 
the low frequencies that belong to waves of large scale. In other words, m he one- 
dimensional finite-element primitive model, all frequencies are aliased that belong to 
the upper one-third of the resonant wave numbers. 

A consequence of the aliasing must be that when a finite-element model of this 
type is used to generate a forced motion (for example, by including a tidai force on 
the right-hand side of the momentum equation), the response will have a noise 
component with wave length between 2d and 3d, as we!]. as the larger wave length 
physically appropriate to the forcing frequency. The cause of this peculiar error is 
that in their finite-element representations 5 and u were given the same degree of 
bLsmoothness.” In the above example, piecewise-linear approximation was used for 
both variables. The aliasing that this creates is illustrated strikingly by the steady 
solutions previously mentioned, both with u = 0 at all nodes, The one with < uniform 

WAVE NUHBER 

FIG. 1. Resonance frequency ad/c as a function of wave number kd for free oscillations of one- 
dimensional models. Curve P (primitive model) is a graph of Eq. (2.7b), curve D (derivative model) of 
(2.13b). In the former case u is interpolated linearly between nodes; in the latter u is uniform between 
modes. In both cases < is interpolated linearly. 
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and k = 0 is the solution physically appropriate to zero frequency (and is equal to the 
continuum steady solution). The one with the “sawtooth” structure C - (-l)i and 
k = n/d is the alias. It clearly has no physical counterpart. Its existence as a solution 
of (2.3) is a result of choosing both a! and p in (2.2) as piecewise-linear bases. That 
choice causes the integral representing the pressure-gradient force (the right-hand side 
of (2.2b)) to take an average of the gradient of [ in two adjoining elements, as is 
evident from the presence of the operator ,&i in (2.3b). This average is clearly zero for 
the sawtooth wave. In other words, the finite-element model is unable to detect the 
pressure gradient in the sawtooth wave and consequently permits this deformation of 
the free surface to persist without particle displacements, in violation of the laws of 
dynamics. 

A remedy for aliasing of this type is to give the same degree of smoothness to u 
and the gradient of [. Since 5 must be continuous (as it is a proxy for pressure), it 
must be interpolated at least linearly. If that choice is made, then u must be uniform 
within elements (and therefore discontinuous between them) in order to have the same 
degree of smoothness as ~[/c?x. An expedient way to represent the transport in this 
manner is by means of Stokes/Helmholtz potentials. In one dimension u = -h @/ax, 
and the potential $ is discretized at the C-nodes using the c-bases ai. The 
corresponding finite-element equations are (Platzman, 1978, Eqs. (4.9a), (4.9b)) 

(2.9a) 

(2.9b) 

These are equivalent to (2.2) if in the momentum equation (2.2b) the weight function 
/? is taken as h &x’/&. The effect of this choice is to cause (2.9b) to converge, in the 
limit of zero discretization, to the derivative a/ax of (h times) the momentum 
equation. Thus we have an example of what I referred to previously as a “derivative” 
model. The boundary condition u = 0, imposed as an essential condition in the 
primitive model, is a natural condition for (2.9). (In two dimensions two scalar 
potentials are used and the derivative model of the vector momentum equation 
consists of two scalar equations one of which converges to the divergence of h times 
the momentum equation, the other to the vorticity of the momentum equation.) 

To solve (2.9) note that (2.9b) requires @/at - gc to be uniform in X. In particular 
we can take a#/& =gc, since an arbitrary function of t alone can be added to 4 
without altering (2.9). This makes it possible to eliminate Q by applying a/i% to 
(2.9a), thereby producing the finite-element wave equation 

5 
Laisdy=- L aa’ 

0 at2 5 -gh $dx. 0 ax (2.10) 
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When cli is piecewise linear and h is uniform, (2.10) leads at internal nodes to the 
difference equation 

(a’/&‘)( 1 + 2/L*) (T/3 = c26*b;l(6xj2. 

At the end points the difference equations that arise from (2.10) are correceiy 
rendered by (2. I 1) supplemented with rigid-boundary reflection conditions 

The solution of (2.1 l)-(2.12) for free oscillations is 

< = A cos kx cos CT& 

#o/g = A cos kx sin or, 

ad/c = (6(1 - cos kd)/(2 + cos kd)]““. 

(2. !3a: 

(2.130) 

provided k is a wave number that makes sin kL = 0: 

k = (1,2, 3 ,..., rr) z/L. 

In addition there is a steady solution (CS = 0) that can be derived from (2.13) by 
setting k = 0, namely, [ = A (uniform eievation), $ = g-4r (zero velocity). 

In Fig. 1 curve D (derivative model) shows the monotonic spectrum produced by 
the frequency function (2.13b). For well-resolved modes (kd < 1) we now haire 
o = kc[l + Q(kd)*]. Although the error is larger than that of model P, where it is of 
order (k@, the derivative model is free of aliasing. Incidentally, it should not be 
inferred that aliasing is inherent in primitive models. as can be seen for example by 
using linear interpolation for u and quadratic for <. Likewise, derivative models are 
not inherently free of aliasing, as becomes evident by using quadratic i~terpolat~9n 
for 4 and iinear for [. 

At first sight aiiasing may seem to be a fatal defect. Indeed, in the context of an 
eigenvalue calculation (Platzman, 1978) it causes serious, perhaps insurmountable 
diffuculties. However, in a tidal calcuiation a smooth response is possible in spite ot 
aliasing. because the resonance cross section of an aliased mode is very smail when 

the grid interval is small enough to give good resolution to the principal wave length 
of the response. The example next to be discussed is designed to illustrate this point. 

3. APPLICATION TO ONE-DIMENSIONAL TIDAL MODELS 

The simplest adaptation of the foregoing analysis to tidal models is for the problem 
of tides on a continental shelf. Let x = 0 be the location of the coast and x = L the 
shelf break. where the water on the self is in direct contact with that of the .deep 
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ocean (Fig. 2). At x = L. the boundary condition is replaced by < = c(t), a prescribed 
tide elevation considered to be produced by the action of tidal forces on the deep 
ocean. I assume that 

4= ii cos cot, (3.1) 

where 2 and w  are the assigned amplitude and frequency of the tide constituent at the 
shelf break. 

Consider the boundary conditions for the primitive model with difference equations 
(2.3). In place of (2.5) we now have 

240 = 0; (3.2a) 

c, = s (3.2b) 

as essential boundary conditions. Hence (2.2a) is applied from i = 0 to n - 1, and 
(2.2b) from i = 1 to IZ. At the coast (i = 0) the boundary condition is the same as 
before, so we again get a correct rendition of (2.2a) there by applying rigid-boundary 
reflection conditions (2.6a) to (2.3a). At the shelf break the auxilliary condition 

(apt) y&l,/3 = -cQ2~,/26x (3.3) 

permits us to retain (2.3b), for if (3.3) is subtracted from (2.3b) at i = IZ, the result is 
equivalent to (2.2b) at i = n. 

Difference equations (2.3) must be solved now subject to boundary conditions 
(3.2) and auxiliary end conditions (2.6a) and (3.3). As a preliminary step, we 
consider the resonances of this model. These can be obtained from the same set of 
equations by replacing (3.2b) with c,, = 0 and (3.3) with free-boundary reflection con- 
ditions 

c,+1 =-L-1; u,+1= u,-1. (3.4) 

The solution of this problem is again (2.7a) but with a different array of resonance 
wave numbers, namely those for which cos kL = 0: 

k = (f, ;, ; ,..., N - f) n/L. (3.5) 

x=0 x=L 
(coast ) (shelf break) 

FIG. 2. Definition sketch in x, z-plane. 
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(The first of these gives the well-known quarter-wave res0nance.j The frequency 
function (2.7b) is unchanged, however, and therefore is still depicted by curve P in 
Fig. 1, with the attendant aliasing. 

Coming to forced oscillations, we know that (2.7) satisfies (2.3j and the 
homogeneous end conditions (2.6a), (3.2a) at the coast (X = 0). Moreover, for each 
input frequency LL) there are two output wave numbers: a low wave number k, and its 
high wave number alias k,. Our expectation therefore should be that when ihe 
additional homogeneous end condition (3.3) and inhomogeneous (3.2b) are imposed5 
the problem can be solved by a linear combination of two components, each with the 
form (2.7aj: 

[ = jA,cos k,x + A, cos k+j cos wt. 

u/c = (A, sin k,x + Alsin k,.x) sin wf, 
(3,6a) 

The relation between frequency and wave number is the same as for free oscillations, 
namely, (2.7b),. but now is more appropriate when inverted: 

kd = arc cos 
( 
-2 + (3.&j . I 

where 12 z wd/c is the dimensionless input frequency. The upper sign gives the low 
wave number k,, the lower sign the alias k,. The left-hand panel of Fig. 3 is a graph 
of (3.6b)? which in part is identical to curve P of Fig. 1 but is extended to values of 

FIG. 3. Response wave number kd as a function of input frequency wd/c for forced oscillatior,s of 
one-dimensionai models. Left panel: primitive model, (3.6b); right panel: derivative model, (3. lob). 
These curves extend those of Fig. I to complex wave numbers. Solid lines show rest part of kd, dashed 
iines imaginary part. 
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S2 > 3 i” where the output wave numbers are complex. This range has no physical 
relevance but permits a complete view of the response of the discrete equations. 

By requiring the composite solution (3.6a) to satisfy end conditions (3.2b) and 
(3.3), we get, respectively, 

c,+c,= 1; 5, c, + r2 c, = 0, (3.7) 

where t, G tan fk, d (m = 1,2) and 

C, = (A,,& cos k, L (3.8) 

is a proxy for the amplitude A,. It is apparent from (3.8) that each of the component 
admittances Am/x is a product of the resonance magnification factor set k,L and a 
factor C, dependent on the resolving power of the grid (as well as on the impressed 

TABLE I 

Scaled Resonance Frequencies S = wL/nc vs Scaled Wave Numbers K I kL/q with Domain kesolution 
L/d = 22.” 

K (2.7b) 

0.5 0.50 0.50 1.00 
1.5 1.50 1.50 2.95 
2.5 2.50 2.50 4.79 
3.5 3.50 3.50 6.45 
4.5 4.50 4.50 7.87 
5.5 5.49 5.49 9.03 
6.5 6.47 6.48 9.90 
7.5 7.44 7.45 10.50 
8.5 8.38 8.40 10.82 
9.5 9.28 9.32 10.89 

10.5 10.12 10.18 10.74 
11.5 10.86 10.97 10.39 
12.5 11.48 11.64 9.86 
13.5 11.93 12.15 9.18 
14.5 12.12 12.42 8.37 
15.5 12.01 12.39 7.46 
16.5 11.49 11.96 6.45 
11.5 10.50 11.02 5.37 
18.5 8.97 9.50 4.24 
19.5 6.91 7.38 3.06 
20.5 4.37 4.69 1.85 
21.5 1.49 1.61 0.62 

Primitive models 
(4.4b) (2.13b) 

~- 

0.50 
1.50 
2.5 1 
3.54 
4.58 
5.64 
6.74 
7.86 
9.03 

10.23 
11.49 
12.78 
14.13 
15.51 
16.92 
18.33 
19.71 
21.02 
22.19 
23.15 
23.85 
24.21 

Derivative models 
(4.1 lb) 

0.50 41.99 
1.50 41.75 
2.5 1 41.29 
3.53 40.62 
4.57 39.78 
5.62 38.79 
6.70 37.68 
7.81 36.50 
8.95 35.26 

10.13 34.01 
11.36 32.76 
12.63 3 1.54 
13.94 30.37 
15.30 29.26 
16.70 28.23 
18.12 27.30 
19.50 26.47 
20.84 25.76 
22.06 25.18 
23.08 24.13 
23.82 24.43 
24.2 1 24.28 

” Alias frequencies are printed in italics. Abnormal frequencies are those in the last and third from the 
last columns. The continuum resonance frequencies are equal to K. 
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frequency). I will refer to C, as the “resonance cross section’? of the component. The 
sohuion of (3.7) is 

c, = r&r2 - r1); c, = r1/(r1 - ?-J? 

which. by means of (3.6b), can be converted to 

c,,,=$ + (1 -.2/3)-1Jz] (3.3) 

(upper sign for C,, lower for C,). At high response resolution (~2 < l)---the only 
situation of physical interest-C, z 1 + 0’/12 and C2 z - 52’/12. This shows that if 
the response is well resolved (that is, d Q c/o), the aliased component will not be 
quantitatively significant except very close to one of the alias resonances. 

In both the continuum and discrete models, resonances on the shelf occur at hatf- 
integer values of the scaled wave number K s kLjz. The finite-element model has Y! 
of these resonance wave numbers in accordance with (3.5), and as previously noted. 
the upper one-third are aliased. The corresponding resonance frequencies are fixed by 
the frequency quation (2.7b) and can be conveniently scaled in a manner analogous 
to that of k, namely, by S = oL/m = Bn/z. (In the continuum, S = K.) IG Table I 
the column headed (2.7b) gives values of S for the present model in the particular 
case n (= L/d) = 22, a domain resolution used by Gray and Lynch (1979) in one of 
their examples. Note that the frequency of the slowest aiias resonance very nearly 
coincides with that of the second natural resonance: I.495 and 1.500, respectively, 

‘The foregoing response characteristics are illustrated in Fig. 4, which shows the 

SCALED FREQUENC? 

FIG. 4. Response amplitude as a function of scaled input frequency S E wL/ac in the note- 
dimensional primitive model. Upper panel: low wave number component ;A, j (solid curve) am! high 
wave number alias IA 2 1 (dashed curve); lower panel: amplitude iA, + A 1 1 of cozstal elevation. The ucli 
of amplitude is the input amplitude 2, and the domain resolution is Lid-= 22. 
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FIG. 5. Same as Fig. 4 but on an expanded frequency scale limited to 0 < S < 5. 

component amplitudes ]A r 1, ]A, / and the amplitude IA r + A? 1 of coastal elevation, as 
a function of S in the case n = 22. Figure 5 shows the same curves on an expanded 
frequency scale in the range 0 < S < 5. (Larger values of S are not of practical 
interest because the wave lengths they excite are too small to be well resolved.) The 
pathologically small cross section of the first alias resonance is apparent from Fig. 5, 
and is more clearly displayed on the greatly expanded frequency scale of Fig. 6. The 
second alias is somewhat more prominent (Fig. 5). An interesting feature of Fig. 4 is 

$.c&$& 1.‘im 1.iEE 
SCALED FREQUENCY 

FIG. 6. Detail of Fig. 5 showing the first aIias resonance on a greatly expanded frequency scale. 
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the abrupt attenuation of the response when the input frequency exceeds the critical 
value c 3”‘fd? beyond which there are no resonances. This corresponds to a scaled 
frequency S = n 3”‘/7c (= 12.13 for n = 22). Xf the discrete model is forced ai a 
frequency greater than this, it does not permit waves to propagate, thus causing the 
excitation to be trapped at the source. (The remedy is of course simply to choose a 
much sma’iler value of d!) 

In their first example Gray and Lynch (1979) considered a chann.el of depth 
h = 30 ft (9.14 m), length L = 22d with d = 1.3 X 10’ ft (39.6 km)! and input period 
22.0 hr. These data (and g = 9.8 ms?) give a scaled frequency S = 4.25 (indicated by 
the arrow in Fig. 5), which fortuitously is close to the second alias resonance and 
should therefore be expected to produce a noisy response, This expectation is 
confirmed by exhibiting the response as a function of x at frequency S = 4.26 (Fig. 
7). If the input frequency is shifted to that of the M2 tide (period 12.42 hr), the scaled 
frequency is reduced by about 3.4% to S = 4.12. This slight shift away from the alias 
resonance gives a smoother response with noise amplitude only about haif that shc-~ 
in Fig. 7, a resuit consistent with Fig. 5. 

We turn next to a brief examination of the response of the finite-element equations 
(2.9) based on Stokes/HelmhoItz potentials. The problem to be solved is defined by 
the difference equations (2.11) from i = 0 to n - I, the rigid-boundary rerlection 
condition (2.12a) needed to make (2.11) equivalent to (2.10) at the coast, and the 
boundary condition 5, = 4 at the shelf break, with - < is in (3.1). For free osciilations 
the solution is formally identical to (2.13), but with half-integer values of the scalea 
wave number K E kL/z, as in (3,5). It can further be adapted to forced oscillattons 
merely by replacing CJ in (2.13a) with w: 

< = A cos kx cos tot, 

&a/g = A cos kx sin tit, 
(3. ISa.‘> 

DISTANCE FROM ~CDAST 

FIG. 7. Surface elevation versus x/d for a scaled input frquency S = 4.26, in the one-dimensional 
primitive modei. The dashed curve is the continuum response, the approximating solid ctirve is the 
discrete response, and the smaller-amplitude solid curve is the piece-wise-linear truncation error formed 
from discrete minus continuum nodal values. The unit of elevation is the input amplitude x. 
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FIG. 8. Amplitude IA 1 of coastal elevation as a function of scaled input frequency wL/m, in the 
one-dimensional derivative model. 

and inverting the frequency equation (2.13b): 

kd = arc cos [-2 + 3/( 1 + Q’/6)], (3. lob) 

where J2 G tad/c as before. The right-hand panel of Fig. 3 is a graph of (3.10b), and 
the column headed (2.13b) in Table I gives the resonance frequencies for this model. 
(The trapping frequency is exactly twice that of the preceding model.) 

The above solution has only one component because there is no aliasing in the 
derivative model. It is completed by the use of the boundary condition &, = [ to fix 
the output amplitude: 

A =zsec kL. (3.11) 

Figure 8 shows /A 1 as a function of scaled frequency. Since IA 1 is equal to the coastal 
amplitude of <, Fig. 8 is comparable to both panels of Fig. 5. Absence of aliasing 
evidently provides a smoother response, as shown in Fig. 9. Although the rms error is 
about the same as in Fig. 7, the scale of the error is now that of the response, instead 
of being primarily “26x noise.” 

‘.I ‘.. I 

-2. ,, 
0 5 IO I5 20 

DISTANCE FROM COAST 

FIG. 9. Surface elevation versus x/d for S = 4.26, in the one-dimensional derivative model. The 
curves are analogous to those of Fig. 7. 
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The foregoing analysis shows how small-scale error can arise from aliasing in a 
one-dimensional model of tidal type, and how such errors can be avoided. An 
extension of the analysis to two dimensions can be made with only moderate 
complications, and is carried out in the next section. 

4. TWO-DIMENSIONAL MODELS 

The extension of finite-element equations (2.2) to a two-dimensional domais is 

where dS is an element of area. I will limit this account to pureiy longitudinal 
oscillations in which the volume transport h has zero !I-component, so there are 
again only two dependent variables 5 and u, each a function only of X. The basis 
functions, however, are two-dimensional, OL being the pyramidal analogue of a two- 
dimensional delta function and j3 either like a (primitive model) or proportional to the 
gradient of cy (derivative model). 

The domain of concern to us is the infinite strip in the X, y-plane between the coast 
x = 0 and the shelf break x = L. The left panel of Fig. IO ilhtstrates a 
“homogeneous” triangulation of this domain in which the elements are identica! in 
size and shape and all internal nodes have the same number of neighbor links. In this 
grid the element triangles are isosceles with altitude d, and the number of links is six. 

Et is a simple matter to show that when the motion is purely longitudinal and the 
basis functions piecewise linear, the difference equations obtained from (4.1) with 
homogeneous triangulation are identical to those derived from one-dimensional 
models in the preceding sections. (This is not surprising in view of the arrangement of 
links along equally-spaced lines parallel to the Jr-axis.) All of the results obtained TV 
this point therefore apply to the left panel of Fig. 10, 

x=0 x=L X=0 x=L 

FE. i0. Two triangulations for discussion of effects of two-dimensionaiity. 
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The situation is different, however, for the right panel of Fig. 10. This well-known 
“inhomogeneous” triangulation also consists of identical isosceles triangles but the 
links parallel to the x-axis create two distinct lattices, in one of which each node is 
linked to four neighbors and in the other to eight. (If the links parallel to the x-axis 
were omitted, the triangulation would be homogeneous.) In these circumstances we 
must provide for the possibility that C, u on one lattice may differ from C, u on the 
other for the same value of x. 

Let 5, u denote values on the lattice with four links and C, U’ on the one with eight. 
Then the difference equations that arise from (4.1) for a primitive model with 
piecewise-linear bases are 

(a/at)(t; + p2C)/2 = --p&‘/6x, (4.2a) 

(a/at)@4 + ,&4’)/2 = -2pSr’/dx, Vb) 

at an interior C, u node and 

(3/lat)(C + 2p’r’ + p2[)/4 = -/d(u’ + u)/2dx, (4.3a) 

(2/?lar)(u’ + 2p2u’ + p2u)/4 = -c2pS(5’ + [)/26x, (4.3b) 

at an interior c, U’ node. The operators p and 6 are those defined in (2.4). 
At the coast we have as before u = 0 and U’ = 0 as essential conditions in place of 

(4.2b) and (4.3b), while (4.2a) and (4.3a) can be retained as the correct rendition of 
(4. la) provided we adopt rigid-boundary reflection conditions (2.6a) for both [, u and 
c, u’. At the shelf break where [ and C are subject to essential conditions, we do not 
apply (4.la) and hence neither (4.2a) nor (4.3a). In the case of free oscillations these 
essential conditions are 5 = 0 and c = 0. Moreover, at the shelf break (4.2b) and 
(4.3b) can be retained as the correct rendition of (4.lb) provided the free-boundary 
reflection conditions (3.4) are adopted for both 5, u and c, u’. In that case the 
solution of (4.2) (4.3) for free oscillation is 

(5, i’) = (LA) A cos kx cos a, 

(u,u’)/c=+(~,A)A sinkxsinat, 

A E -2/[ 1 T (7 + 2 cos kd)“2], 

(4.4a) 

ad/c = (4 sin kd)/[(7 + 2 cos kd)“’ f cos kd]. (4.4b) 

As before, the resonance wave numbers are those that make cos kL = 0, namely, 
(3.5). It is apparent from (4.4a) that ([, u) is not necessarily equal to (C, u’) for the 
same x, t. The deviation between the two lattices is controlled by the dispersion 
parameter 1. 

Frequency equation (4.4b) provides an interesting comparison with its one- 
dimensional analogue (2.7b). As shown by the P-curves in Fig. 11 there are now two 
branches instead of one, corresponding to the sign alternative in (4.4b). They are 
identified in the figure as PN (“normal” P, obtained by taking the upper sign in 
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FIG. 11. Resonance frequency ad/c as a function of wave number kd for free longitxkal 
oscillations in a domain triangulated as in the right panel of Fig. 10. Curves P (primitive mcdelj are 
from (4.4b), curves D (derivative model) from (4.1 lb), and in each case N (normalj and A (abnormalj 
signify respectively the upper and lower sign alternatives in these equations. T’ne two N bran&es very 
nearly coincide with the P and D curves of Fig. 1. 

(4.4b)) and PA (“abnormal” P, from the lower sign). Both branches are folded back 
to zero frequency at kd = 71, so we now have a double aliasing effect. The PN branch 
has the reassuring property that it differs from curve P of Fig. 1 only slightly (at 
most 2.5% in frequency over the unaliased range of wave numbers), despite the fact 
that the algebraic relations (2.7b) and (4.4b) are manifestly different. The abnorma! 
branch PA arises from the inhomogeneity of the grid triangulation (Fig. IO, right 
panel), which as previously noted forms two interlacing lattices of nodes. 

The nature of the abnormal solution can be examined by considering the hmit of 
(4.4) at high resolution kd --t 0. Then for the upper (normal) sign, L + t so 
(i’, u’) -+ (C, U) and (4.4) converges to the continuum solution with o -+ kc. The lower 
sign, however, makes ,I --f - 1 so (c, u’) -+ G(<, u). In this case nodal values on the 
two lattices fail to coalesce and (4.4) converges to 

([,r’)=(l,-+)Acoskxcosat, 

(u,u’)/c=(-l,$)Asinkxsinof, 

CT = 2kc, 

clearly not a physically appropriate solution. The existence of this abnormal solution 
arises from the structure of the governing difference equations (4.2), (4.3). In the limit 
associated with the lower sign in (4.4), the difference equations converge to abnormal 
continuum equations 

ar;lat = 2aupxx; au/at = 2gh aqax. 
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The upper sign, on the other hand, which leads to coalescence of nodal values on the 
two lattices, causes (4.2), (4.3) to converge to the proper continuum equations (2.1). 

Turning to forced oscillations, we can follow a procedure entirely analogous to that 
used in the one-dimensional case. At the shelf break the boundary condition is 

(C 5’) = (1, 1)Acos or. (4.5) 

Further, (4.2b) and (4.3b) will correctly render (4.lb) at i = IZ if supplemented, 
respectively, by 

(a/at) p&;/4 = -c262g/26.q (4.6a) 

(apt) p6(2u:, + z&)/4 = -c2d2(r:, + 5,)/46x. (4.6b) 

Now, we know that (4.4) satisfies all conditions of the problem except the two 
inhomogeneous end conditions (4.5) and the two homogeneous (4.6). Since there are 
four output wave numbers for each input frequency, we should expect a response 
consisting of a superposition of four components, each with the form (4.4a): 

4 

(C, r;r> = 2 (1, &)A, cos k,x cos ot, 
m=l 

(u, u’)/c = 5 (1,&,&U,) sin k,x sin wt. 
m=l 

(4.7a) 

The sign alternative here is the same as that in (4.4). I will adopt the convention that 
components m = 1, 2 correspond to the upper sign (the normal components) and 
m = 3,4 to the lower sign (abnormal components). Each of these pairs has a low 
wave number, respectively, k, and k, , and a high wave number alias, k, and k,. (We 
can also properly regard k3 and k, as well as k, as aliases of k, .) The frequency 
equation (4.4b) cannot be solved explicitly for kd but it can be rewritten as a quartic 
equation for cos kd: 

0 = (16 + Q2)2 (cos kd)4 + 4Q2(16 - l12)(cos kd)3 

- (16 - Q*)(16 - 5R2)(cos kd)2 

- 4Q2(16 - 702)(cos kd) + (16 + 7J22)2, 

(4.7b) 

where J2 = c&/c. The left panel of Fig. 12 shows the result of solving (4.7b) for a 
range of values of D that extends to the region of complex wave numbers. It is 
analogous to the left panel of Fig. 3 (the one-dimensional model). The columns 
headed (4.4b) in Table I list the two sets of resonance frequencies in this model. 

It remains to find the four amplitude factors A, in (4.7a), and for this purpose we 
have only to invoke the four end conditions at x = L. The following four 
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FIG. 12. Response wave number kd as a function of input fresuency cud/c for forced oscillations of 
two-dimensional models. Left panel: primitive model, (4.7b); right panel: derivative mode;. !4.12b), 
Solid lines show real part of kd, dashed lines imaginary part. Compare this diagram with its one- 
dimensional anaiogue. Fig. 3. 

simultaneous equations emerge from substitution of (4.7a) respectively into (45) and 
(4.6): 

m=l 

j4.8b) 

where C, is the resonance cross section defined in (3.8) and r, = + tan fk,d (upper 
sign for m = 1, 2; lower sign for 1n = 3,4). Equations (4.8) are clearly the analogues 
of (3.7). 

Since A, and r’m in (4.8) are known functions of k,d, the four resonance cross 
sections C, can be calculated from (4.8) as functions of input frequency, and the 
corresponding amplitudes can then be evaluated from (3.8). The two upper panels of 
Fig. 13 display IA,i, 1z42( and IA,\, IA41, respectively, for the same domain resolution 
as’used previously (n = 22). The top panel is very nearly identical to the upper panei 
of Fig. 5, its one-dimensional analogue. 

As in one dimension the amplitude of normal component A 1 is dominant when the 
response is well resolved (LJ 4 l), unless one of the other components is close to 
resonance. In the range Cl < S < 2, for example, there are six resonances as follows 
(see Table I): 
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FIG. 13. Response amplitude as a function of scaled input frequency wL/m in the two-dimensional 
primitive model. From top to bottom the four panels are: normal amplitude IA,( (solid curve) with its 
alias Jilzj (dashed curve); second, abnormal amplitude /A,/ (solid curve) with its alias /A,/ (dashed 
curve j; third, amplitude IA, + A, + A, + .4,I of coastal elevation 5; fourth, the dispersion 100 15 - c 1. 
Compare the first and third panels with their one-dimensional analogous in Fig. 5. 
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FIG. 14. Surface elevations [ (heavy solid curve), C (light solid curve), and the continuum solution 
(dashed curve) vs x/d for a scaled input frequency S = 4.26 in the two-dimensional primitive model. 
This diagram is the two-dimensional analogue of Fig. 7, except that here the small-amplitude curve is 
i-i’. 

the finite-element wave equation. Let [, $ and C, 4’ denote nodal values on the two 
lattices of Fig. 10 (right panel) and consider only longitudinal oscillations, so that 
each of the dependent variables is a function only of X. Then for piecewise-linear 
bases and uniform depth, the finite-element wave equation leads to the following 
difference equations, respectively at interior [ and c nodes: 

(a’/at’>(c + P’C)/3 = czp2r + 4(5’ - <)1/(6x)*, (4.10a) 

(a’/at’)(c + 2P2$ + P2C)/3 = c*p*c + 4(C - r’)]/(6x)*. (4. lob) 

At x = 0 we obtain a correct rendition of (4.9a) by using rigid-boundary reflection 
conditions [-, = Cl and C-, = ci in (4.10a). At the shelf break x = L, (4.9b) and 
(4.10b) are replaced by the boundary condition (4.5). The solution of-this problem is, 
for free oscillations (X= 0 in (4.5)) 

(t, 5’) = (1, A) A cos kx cos wt, 

(4, qb’ ) a/g = (1, A) A cos kx sin wt, 

/I = -2/[ 1 T (7 + 2 cos kd)“‘], 

(4.11a) 

ad -= 12112 l- 2( 1 + cos kd) w 

’ c cos kd f (7 + 2 cos kd)“* 
(4.1 lb) 

The resonance wave numbers are again the ones that make cos kL = 0, namely, (3.5). 
Frequency equation (4.1 lb) is plotted as the D-curves in Fig. Il. As in the 

preceding model, for each wave number there are two resonance frequencies and thus 
two free modes. One (labeled DN, from taking the upper sign in (4.1 lb)) is normal in 
the sense that it approximates the continuum response. (It differs from curve D in 
Fig. l-the one-dimensional analogue-by at most 1.4% in frequency.) The 
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abnormal branch (DA) arises from the inhomogeneity of the grid triangulation (Fig. 
IO, right panel). 

To solve (4.1Oj subject to the inhomogeneous conditions (4.5), we need a linear 
combination of two components. At first sight it seems that only one component is 
available because the D-curves in Fig. 11 show the wave number as a single-valued 
function of frequency. However, these curves depict only the aspect of ‘(4.4 lb) that 
corresponds to free oscillations, and therefore to real wave numbers k. In fact, as wit1 
be seen below, (4.1 lb) does indeed make the wave number a double-valued function 
of frequency if complex wave numbers are taken into account. The forced response 
therefore is expressible as a linear combination of two components: 

2 

(i,r’)= z] (l,&)A,cosk,xcoswt, 
m=l 

Here k, and k, are wave numbers derived from inversion of (4-l lb): 

kd=arccos -1 + 

(4.1221 

where 0 z Q2/ 12 (with fi E wd/c). 
The right-hand panel of Fig. 12 maps the two functions (412b). The upper sign 

gives the normal branch of kd, the lower sign the abnormal branch. The norma! wave 
number k, is real in the range 0 < Q < 3 and omplex for a > 3. The abnormal k, is 
real in 3 <R < 6 and complex for 0 <B < 3 and 52 > 6. In particular, in the range 
0 < J2 Q 1 of physical interest (4.12b) gives 

k,d=Q+O(Q3), 

k2d = TC + i[arc cash 3 + O(Q’j]. 

The abnormal component is evidently strongly trapped at the source, its attenuation 
being at the rate of approximately exp(-arc cash 3) = 3 - Sri’ = 0.17 per grid 
interval. 

Formal completion of the solution comes from imposing boundary condition (4.5) 
on (4.12a) at x= L: 

2]: (l,&JC,=(l: I), j&i31 
m=l 

where C, is the resonance cross section defined in (3.8). The solution of (4,13) is 
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FIG. 15. Amplitude Ill =: /A, 1 of coastal elevation (upper panel) and the dispersion 100 I[- cl 
(lower panel) in the two-dimensional derivative model. (The abnormal amplitude A, is negligible.) 
Compare the upper panel with its one-dimensional analogue, Fig. 8. 

which, by means of (4.12b) can be converted to 

c,., = f[l f (1 + 28 + 2e*)-“*l. (4.14) 

At high response resolution (0 < 1) the cross sections are C, x 1 - S2’/24 and 
C2 z @/24, thus assuring that the abnormal part of the response is small. 

Figure 15 shows normal amplitude IA 1 ( calculated from the cross section (4.14) as 
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FIG. 16. Surface elevations 1; (solid curve) and the continuum solution (dashed curve) versus x/d for 
a scaled input frequency S = 4.26 in the two-dimensional derivative model. The small-amplitude curve 
is < - 5’. Compare this diagram with its one-dimensional analogue, Fig. 9 (where, however, the small- 
amplitude curve is 5 minus the continuum solution). 


